If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7r^2=15
We move all terms to the left:
7r^2-(15)=0
a = 7; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·7·(-15)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*7}=\frac{0-2\sqrt{105}}{14} =-\frac{2\sqrt{105}}{14} =-\frac{\sqrt{105}}{7} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*7}=\frac{0+2\sqrt{105}}{14} =\frac{2\sqrt{105}}{14} =\frac{\sqrt{105}}{7} $
| 4x-7/2=8 | | 3(2x-5)=2(4x+5) | | 137-4y=81 | | 3y+81=150 | | 63+8y=95 | | 2=1/24y | | 1/24y=10 | | 1-2w-16=5 | | P^2=-12p-35 | | 10-5X=3(4-x)-2(x+7) | | 3x+5=-8x-9 | | 2xx+4=6 | | 75.50n+100=535 | | (4j-2)^2-(2+4j)^2=0 | | 10=1/24y | | 1(1+.0875)^x=2 | | 11z=13z+6 | | 78-7/8x=4x | | 5(9-x)=4(x+18 | | 2/3+3x=1/3-4x | | 75x/100=50 | | 7/8x+3/2=5/4x-3 | | 7•10-58=2x-8 | | 4c/7-30/7=-2/7c | | 3j+8=50 | | 1-3r-4=2 | | 16x4+9=40x2 | | 5+2x=21/2x | | 10/2+2x=5/2x | | 5^-7x=25 | | 4(5b-3)^2+10(5b-3)-6=0 | | -6(x+9)=-11+6 |